B.Sc. 5th Semester (Honours) Examination, 2019 (CBCS)

Subject : Physics

(Nano Materials and Applications)

Paper : DSE-2(1)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any five of the following questions :
 - (a) Why nanomaterials are so important than their bulk counterpart?
 - (b) What is the principle of CVD? What is CVD used for?
 - (c) What are primary differences between SEM and TEM?
 - (d) How does nanosize influence the band gap of a semiconductor?
 - (e) What is Photoluminescence?
 - (f) What is tunneling conduction in nanoparticles?
 - (g) What is a quantum dot? Why it is called so?
 - (h) What is CNT? What are the current applications of CNT?
- 2. Answer any two of the following questions :
 - (a) Describe the Sol-Gel process of nanomaterial synthesis with necessary steps of chemical reactions.
 3+2=5
 - (b) State Scherrer formula explaining the used symbols. Calculate the crystallite size of a nanomaterial from its XRD pattern with FWHM = 0.8° , $\lambda = 0.154 \text{ mm}$ and $\theta = 30^{\circ}$. 2+3=5
 - (c) What are dielectrics? A solid dielectric has electronic polarizability of $10^{-40} Fm^2$. If the internal electric field be a Lorentz field, what is the dielectric constant of the material? Given density of material = $3 \times 10^{28} a toms/m^3$. 2+3=5
 - (d) Draw the schematic diagram depicting the working principle of any one of the following:
 - (i) Scanning Tunneling Microscope
 - (ii) Atomic Force Microscope

5

Please Turn Over

19101

 $2 \times 5 = 10$

5×2=10

SH-V/Physics/DSE-2(1)/20

(2)

3. Answer any two of the following questions:

- (a) (i) Explain the importance of size and shape dependence of material properties at the nanoscale.
 - (ii) Distinguish between direct band gap and indirect band gap semiconducting materials.

8+2=10

 $10 \times 2 = 20$

- (b) Describe in detail about the principle and process of X-ray diffraction technique with neat sketch. Explain the application of XRD technique for nanomaterial characterization. 6+4=10
- (c) What are top down and bottom up approaches of nanomaterial synthesis? Describe the ball milling process of nanomaterial synthesis with its merits and demerits. 2+6+2=10
- (d) (i) What are surface defects? Briefly describe different types of surface defects in a nano crystal.

(ii) How thin films are used in solar cell devices?

(1+4)+5=10